Saturday, 1 July 2017

Simple Moving Average Methode Prognose


Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion auf der Kalkulationstabelle so positionieren, dass das Ergebnis der Berechnung erscheint, wo es das folgende aussehen soll. Simple Moving Average - SMA BREAKING DOWN Simple Moving Average - SMA Ein einfacher gleitender Durchschnitt ist anpassbar, da er für einen berechnen kann Unterschiedliche Anzahl von Zeiträumen, einfach durch Hinzufügen des Schlusskurses der Sicherheit für eine Anzahl von Zeiträumen und dann Aufteilung dieser Summe um die Anzahl der Zeiträume, die den durchschnittlichen Preis der Sicherheit über den Zeitraum gibt. Ein einfacher gleitender Durchschnitt glättet die Volatilität und macht es einfacher, die Preisentwicklung eines Wertpapiers zu sehen. Wenn der einfache gleitende Durchschnitt aufblickt, bedeutet dies, dass der Sicherheitspreis steigt. Wenn es nach unten zeigt, bedeutet dies, dass der Wert der Sicherheit abnimmt. Je länger der Zeitrahmen für den gleitenden Durchschnitt, desto glatter der einfache gleitende Durchschnitt. Ein kürzerfristiger gleitender Durchschnitt ist volatiler, aber sein Lesen ist näher an den Quelldaten. Analytische Bedeutung Durchgehende Durchschnitte sind ein wichtiges analytisches Instrument, um die aktuellen Preisentwicklungen und das Potenzial für eine Veränderung eines etablierten Trends zu identifizieren. Die einfachste Form der Verwendung eines einfachen gleitenden Durchschnittes in der Analyse ist es, um schnell zu identifizieren, ob eine Sicherheit in einem Aufwärtstrend oder Abwärtstrend ist. Ein weiteres beliebtes, wenn auch etwas komplexeres analytisches Werkzeug ist es, ein Paar einfacher gleitender Durchschnitte zu vergleichen, wobei jeder unterschiedliche Zeitrahmen abdeckt. Wenn ein kurzfristiger einfacher gleitender Durchschnitt über einem längerfristigen Durchschnitt liegt, wird ein Aufwärtstrend erwartet. Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzeren Durchschnitt eine Abwärtsbewegung im Trend. Beliebte Trading Patterns Zwei beliebte Trading-Muster, die einfache gleitende Durchschnitte verwenden, gehören das Todeskreuz und ein goldenes Kreuz. Ein Todeskreuz tritt auf, wenn der 50-tägige, einfach gleitende Durchschnitt unter dem 200-Tage-Gleitender Durchschnitt liegt. Dies gilt als bärisches Signal, dass weitere Verluste auf Lager sind. Das goldene Kreuz tritt auf, wenn ein kurzfristiger gleitender Durchschnitt über einen langfristig gleitenden Durchschnitt bricht. Verstärkt durch hohe Handelsvolumina, kann dies signalisieren weitere Gewinne sind in store. Weighted Moving Average Forecasting Methoden: Vor-und Nachteile Hallo, LIEBE Ihre Post. Frage mich, ob du weiter rechnen könntest. Wir verwenden SAP. In ihm gibt es eine Auswahl, die du wählen kannst, bevor du deine Prognose namens Initialisierung ausführt. Wenn Sie diese Option überprüfen, erhalten Sie ein Prognoseergebnis, wenn Sie im selben Zeitraum die Prognose ausführen und die Initialisierung nicht bestätigen. Ich kann nicht herausfinden, was die Initialisierung macht. Ich meine, mathmatisch. Welches Prognoseergebnis ist am besten zu speichern und zu verwenden. Die Änderungen zwischen den beiden sind nicht in der prognostizierten Menge, sondern in der MAD und Error, Sicherheitsbestand und ROP-Mengen. Nicht sicher, ob Sie SAP verwenden. Hallo danke für die so genaue Weise zu gn. Danke Jaspreet Hinterlasse eine Antwort Antworten abbrechen Über Shmula Pete Abilla ist der Gründer von Shmula und der Charakter, Kanban Cody. Er hat Unternehmen wie Amazon, Zappos, eBay, Backcountry geholfen und andere reduzieren Kosten und verbessern die Kundenerfahrung. Er tut dies durch eine systematische Methode zur Erkennung von Schmerzpunkten, die den Kunden und das Geschäft beeinflussen, und ermutigt eine breite Beteiligung der Firmenpartner, ihre eigenen Prozesse zu verbessern. Diese Website ist eine Sammlung seiner Erfahrungen, die er mit Ihnen teilen möchte. Beginnen Sie mit kostenlosen Downloads

No comments:

Post a Comment